Understanding Recursion
For Beginners

<

Pavle Paunovic

Published by:
Pavle Paunovic

Copyright © 2020

by Pavle Paunovi¢ (www.pavlepaunovic.com).
All rights reserved.

No part of this book may be reproduced or
transmitted
in any form without written permission of the
author.

Table Of Content

Introduction and word of the author..................ccccoeiiin, 2
What iS reCUISION?.......c.cooiiiiiiicccc 3
From while/for loops tO recursion...........c.ccveeeveeeeeeciecieceeeeeee, 5
Chapter 1: Recursion and arrays........c.cccceeeeeeveneneneeneneneenenenene 8
ATTAY SUML ittt ettt ettt et e e teestte et eseseessaeebeessseenseesnseenns 8
STACK. ... 8
Largest number in array.....oooeiii Error! Bookmark not defined.
Smallest number in array.........ccccocvvevenenenne. Error! Bookmark not defined.
Flatten nested Alray...coeiii Error! Bookmark not defined.
Even numMbErs.........coovveiiicciieeeee e, Error! Bookmark not defined.
MUltIply numbers in alray..cooeeiiiiiiii Error! Bookmark not defined.
Chapter 2: Recursion and strings..........ccccceeue.... Error! Bookmark not defined.
Recursive string reversal..........cccccooeveenne Error! Bookmark not defined.
Get number from a string Error! Bookmark not defined.
Palindrome.........cccoooiieeiieeeceeeeee Error! Bookmark not defined.
Shortest word in string Error! Bookmark not defined.
Nested string ... Error! Bookmark not defined.
Chapter 3: Recursion and linked lists.................. Error! Bookmark not defined.
Appending data to linked list.........cceeeneeenneen. Error! Bookmark not defined.
Delete node at kK indeX.........cccveeevivecieeennennee. Error! Bookmark not defined.
Reversing linked list with recursion................ Error! Bookmark not defined.
Logglng linked listdata.........c...ccoooeeenirennnn. Error! Bookmark not defined.
Chapter 4: Recursion and binary trees................ Error! Bookmark not defined.
Creating a binary tree and appending data to iterror! Bookmark not defined.
Minimum value in binary tree..........cccccoeue..... Error! Bookmark not defined.
Maximum value in binary tree...oeeveecieeeees Error! Bookmark not defined.
Deep first searCh.......ccccooveeeeeiiiieeee, Error! Bookmark not defined.
Chapter 5: Recursion and backtracking.............. Error! Bookmark not defined.
Permutations........cccoveeiiiiieeee Error! Bookmark not defined.
SUDSELS.....ooovieeeee e Error! Bookmark not defined.
CombinationsS.........ccooeeeiiiieieee e Error! Bookmark not defined.
Chapter 6: Memoization and Tail recursion........ Error! Bookmark not defined.
Memoization..........coocuveeieciieeeee e, Error! Bookmark not defined.
Tail reCursioN..........ccovveeiiiecieeeeeee e Error! Bookmark not defined.
Chapter 7: Inner game of recursion...................... Error! Bookmark not defined.
Recursive leap of faith........ccccoevieiiniiiiiiie Error! Bookmark not defined.
Final Words........ccuveiiieieeee e, Error! Bookmark not defined.

Introduction and word of the author

Hello and welcome to the book! In this book, I will teach you how
to use recursion and most importantly you will gain an
understanding of what recursion is.

Recursion is a hard topic to grasp (I know because it took me a
while to understand it).

Recursion is a beautiful concept and it will help you solve many
hard problems easily.

[just want you to know that you can do it! You can learn recursion.
I will teach you how to to use recursion on arrays, strings, nested
objects (trees). I will give you step by step examples, so you can see
how recursion works under the hood and effects that have on
memory.

In book I will use JavaScript programming language. I will assume
that you have basic knowledge of programming,.

Just a disclaimer, in the book the function declarations are used. It
is easier for beginners to grasp recursion, instead using arrow

functions. Arrows functions are used for callbacks.

I hope you enjoy the book!

Pavle Paunovié

What is recursion?

A recursive function is a function that it calls itself.
Simple as that!

Let me give you an example:

function recursion(n) {
return recursion(0) :

That right there is recursion! But wait! If you run the code, it will
run infinitely number of times (or until you have memory).

(Do not run this code, it will freeze your browser or browser tab, it
is just for demonstrating purpose)

We need a way to stop the recursion.

We need some condition that when is met it will stop calling the
function.

That condition is called a base case.

function recursion(n) {
if (n === 10) { [1]
return n;

)

return recursion(n + 1): [2]

[1] - This is a base case, the place where a function is stopped and
returns an n.
[2] - Here the n is incremented by one.

Look at this, you can console.log the n, just like in normal loop.

function recursion(n) {
if (n === 10) {
return n;
}
console. log(n) ;
return recursion(n + 1);

[t will log numbers until 10. Simple, right?

From while/for loops to recursion

You saw on the last few pages what recursion is. Let’s convert some
while/for loops to recursion, so you can start using recursion right
away instead of normal loops!

let 1 = 10:

while (i >= 0) {
console. log (i) ;
1—;

Now, let’s convert it to recursion,

function iterateToZero(n) {
if (n === 0) {
return n;
}
console. log(n) ;
return iterateToZero(n—1);

Simple!

Now, let's start adding multiple arguments!

for (let i = 0; i <= 100; i++) {
console. log (i) ;

}

function iterateToSomeNum(n, k) {
if (n > k) {
return Kk;

J

console. log(n) ;
return iterateToSomeNum(n + 1, k)

iterateToSomeNum (0, 100)

Here we have a recursive function with two parameters. You can
put as many parameters as you want. Parameter k is always the
same number. And we increment n by one.

Let us see another example:

function recurseOddNumbers(n, k) {
if (n === k) {
return n;
}
if (!(n% 2 ===0)) {
console. log(0dd ${n})
}

return recurseOddNumbers(n + 1, k)

I hope you understand now recursion on the basic level, and you
know how to use it instead of basic loops. Good job! Let us keep
moving forward!

Chapter 1: Recursion and arrays

Let us see how we can use recursion with arrays!
First, let us sum the array! Pretty simple, but pay attention!

Array sum

function sumArr (arr) {
if (arr. length === 0) {
return O;

)

return arr[0] += sumArr(arr.splice(l)):

}
sumArr ([1, 2,3,4]) // 10

How come this works? Let me introduce you to new concept called

the Stack.
Stack
A stack is a LIFO (Last In First Out) data structure.

This means that every recursive function call is put on top of the
stack and removed from the stack when the recursive call is done!
Let us analyze step by step sumArr function

_________ Step 1 -> 1 + sumArr([2,3,4]);

v Call Stack
®» sumArr

sumATrr

_________ Step 2 -> 1 + 2 + sumArr([3,4]);

v Call Stack
» sumArr
SUMAIT

sumAIrr

_________ Step3 -> 1 + 2 + 3 + sumArr([4]);

v Call Stack

®» sumArr
sumArr
sumArr

sumArr

_________ Step4 ->1+2+3+4+sumArr([]);

v Call Stack

®» sumArr
sumArr
sumArr
sumArr

sumaArr

Okay, we got to the end of the stack, what now? The recursion has
reached base case. Now the stack unwinds! Remember how I told

you that stack is LIFO (Last In First Out). Watch!

1 + sumArr([2,3,4])

1 + 2 + sumArr([3,4]);

1+ 2+ 3+ sumArr([4])

1 +2+3+4+sumArr([])

——————————————— 0+4
¥ Call Stack

® sumArr
sumArr
sumArr

sumArr

¥ Call Stack
® sumArr
sumATrr

sumArr

v Call Stack
® sumArr

sumArr

-9+ 1

10

v Call Stack
® sumArr

10
Yea! We got the right summed number. This is how recursion
works behind the scene. Very nice, right?

[want you to see how we can iterate array with recursion.

We splice array items by one, meaning array length will change the
more computer puts functions on the stack.

11

www.pavlepaunovic.com

	Introduction and word of the author
	What is recursion?
	From while/for loops to recursion
	Chapter 1: Recursion and arrays
	Array sum
	Stack

